Bonjour à tous j'ai un DM en Maths à rendre pour demain. Le voici: On a une fonction définie par : H(t) = - 4,9 t² + 9,8 t + 1,5. 1. Calculer H(0). 2. Montrez q
Question
On a une fonction définie par : H(t) = - 4,9 t² + 9,8 t + 1,5.
1. Calculer H(0).
2. Montrez que pour tout nombre réel t, - 4,9 t² + 9,8 t + 1,5 = [tex]\frac{-1}{10}[/tex] (7 t - 15)(7 t + 1)
3. Trouvez la solution positive [tex]t_{0}[/tex] de l’équation H(t) = 0. Donner une interprétation du résultat.
Merci d'avance pour toutes vos aides.
1 Réponse
-
1. Réponse croisierfamily
h(t) = -4,9t² + 9,8t + 1,5
h(0) = 1,5
2°) h(t) = -0,1 ( 49t² - 98t - 15 ) = -0,1 ( 49t² - 98t + 49 - 64 ) = -0,1 [ ( 7t - 7 )² - 8² ]
= -0,1 ( 7t - 7 - 8 ) ( 7t - 7 + 8 )
= -0,1 ( 7t - 15 ) ( 7t + 1 ) .
3°) h(t) = 0 donne 7t - 15 = 0 donc 7t = 15 d' où to = 15/7 ≈ 2,143 secondes environ !
interprétation : t est le temps en secondes, h est la hauteur ( ou "altitude" ) en mètres , le départ était à 1,5 mètre du sol , le -4,9 est lié à la gravité sur Terre qui tire les objets vers le bas, 9,8 est la vitesse de tir vertical vers le haut en m/s ( soit 35,3 km/h environ ! ) . Conclusion : le projectile retombe au sol au bout de 2,1 secondes environ .